Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-[4-(4-Amino-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazol-3-yl]-1,2,5-oxadiazol-3amine

Si-Yuan Jia, ${ }^{\text {a }}$ Bo-Zhou Wang, ${ }^{\text {a }}$ Xue-Zhong Fan, ${ }^{\text {a }}$ Ping Li ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\mathrm{c}, \mathrm{d}_{*}}$

${ }^{\text {a } X i ' a n ~ M o d e r n ~ C h e m i s t r y ~ R e s e a r c h ~ I n s t i t u t e, ~ X i ' a n ~ 710065, ~ P e o p l e ' s ~ R e p u b l i c ~ o f ~}$ China, ${ }^{\text {b }}$ Department of Chemistry, Jining Teachers College, Wulanchabu 012000, Inner Mongolia, People's Republic of China, ' ${ }^{\text {D }}$, ${ }^{\prime}$ partment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\text {d }}$ Chemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: seikweng@um.edu.my

Received 19 April 2012; accepted 21 April 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.031 ; w R$ factor $=0.096$; data-to-parameter ratio $=12.0$.

The complete molecule of the compound, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{3}$, is generated by a crystallographic twofold rotation axis that runs through the central ring. The flanking ring is twisted by $20.2(1)^{\circ}$ with respect to the central ring. One of the amino H atoms forms an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond; adjacent molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds forming a chain running along [10 $\overline{2}]$.

Related literature

For the synthesis, see: Kulikov \& Kakhova (1994); Zhou et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{3}$
$M_{r}=236.17$

$$
Z=4
$$

Monoclinic, C2/c
$a=7.1681$ (9) A
$b=10.8147$ (13) \AA
$c=12.3448(18) \AA$
$\beta=103.155$ (1) ${ }^{\circ}$
Data collection
Bruker SMART APEX
diffractometer
2675 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.096$
$S=1.08$
1047 reflections

$$
V=931.9(2) \AA^{3}
$$

Mo $K \alpha$ radiation
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.33 \times 0.26 \times 0.17 \mathrm{~mm}$

1047 independent reflections 933 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$

87 parameters
All H -atom parameters refined
$\Delta \rho_{\max }=0.28$ e \AA^{-3}
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 1 \cdots \mathrm{~N} 1$	$0.90(2)$	$2.37(2)$	$2.932(2)$	$121(1)$
$\mathrm{N} 4-\mathrm{H} 2 \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.87(2)$	$2.23(2)$	$3.070(2)$	$162(2)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We acknowledge support from the Equipment Department Preselected Project (grant No. 404060020502) and the Ministry of Higher Education of Malaysia (grant No. UM.C/ HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5881).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kulikov, A. S. \& Kakhova, N. N. (1994). Russ. Chem. Bull. 43, 630-632.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhou, Y.-S., Li, J.-K. \& Huang, X.-P. (2007). Chin. J. Explosives Propellants, 30, 454-556.

supplementary materials

Acta Cryst. (2012). E68, o1573 [doi:10.1107/S1600536812017825]

4-[4-(4-Amino-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazol-3-yl]-1,2,5-oxadiazol-3amine

Si-Yuan Jia, Bo-Zhou Wang, Xue-Zhong Fan, Ping Li and Seik Weng Ng

Comment

We are interested in N -heterocyclic compounds having few hydrogen atoms as these compounds are a source of explosives. In the title compound (Scheme I), the hydrogen atoms constitute an amino group. In $\mathrm{NH}_{2}-\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{O}-$ $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{O}-\mathrm{NH}_{2}$, two amino-subsituted 1,2,5-oxadiazole rings flanking a central 1,2,5-oxadiazole ring; the molecule lies on a twofold rotation axis that relates one flanking ring to the other (Fig. 1). The flanking ring is twisted by 20.2 (1) ${ }^{\circ}$ with respect to the central ring. One of the amino H atoms forms an intramolecular hydrogen bond; adjacent molecules are linked by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 1, Fig. 2). to form a chain running along [1-2-2].

Experimental

3,4-Bis(4'-aminofurazano-3')furoxan was synthesized by using a literature procedure (Zhou et al., 2007). The compound $(7.5 \mathrm{~g})$ was dissolved in acetic acid $(30 \mathrm{ml})$. The solution was added to a reducing agent prepared from stannous chloride dihydrate $(22.6 \mathrm{~g} .100 \mathrm{~mm} \mathrm{~mol})$ dissolved in acetic anhydride $(20 \mathrm{ml})$, acetic acid $(100 \mathrm{ml})$ and concentrated hydrochloric acid (20 ml). The reduction was performed according to an literature procedure (Kulikov \& Kakhova, 1994). The mixture was heated atto 348 K for 8 h . The cool mixture was then poured into water $(150 \mathrm{ml})$. The white precipitate that separated was collected and recrystallized from an ethyl acetate/ether mixture; yield 70%, m.pt. $456-457 \mathrm{~K}$. The purity was established by HPLC to be 99.6%. CH\&N elemental analysis. Calculated for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{3}$ (\%): C 30.51, N 47.46, H1.69. Found: C 30.41, N 47.58,H 1.61.

Refinement

The H -atoms were located in a difference Fourier map, and were refined freely.

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figure 1
Anisotropic displacement ellipsoid plot (Barbour, 2001) of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{3}$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule is located on a twofold rotation axis; symmetry-related atoms are not labeled.

Figure 2
Hydrogen-bonded chain structure. The intermolecular H bond is drawn as a dashed line, the intramolecular H bond is not shown.

4-[4-(4-Amino-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazol-3-yl]-1,2,5-oxadiazol-3- amine

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{3}$
$M_{r}=236.17$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=7.1681$ (9) \AA
$b=10.8147(13) \AA$
$c=12.3448(18) \AA$
$\beta=103.155(1)^{\circ}$

$$
\begin{aligned}
& V=931.9(2) \AA^{3} \\
& Z=4 \\
& F(000)=480 \\
& D_{\mathrm{x}}=1.683 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1575 \text { reflections } \\
& \theta=3.4-27.7^{\circ} \\
& \mu=0.14 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=293 \mathrm{~K}$
Prism, colorless

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
2675 measured reflections
1047 independent reflections
$0.33 \times 0.26 \times 0.17 \mathrm{~mm}$

933 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-14 \rightarrow 13$
$l=-15 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.096$
$S=1.08$
1047 reflections
87 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0566 P)^{2}+0.219 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.17$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.020 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	0.0000	$0.80892(10)$	0.7500	$0.0471(3)$
O2	$0.16242(12)$	$0.35531(8)$	$0.56878(8)$	$0.0482(3)$
N1	$0.09563(14)$	$0.73719(9)$	$0.68904(8)$	$0.0431(3)$
N2	$0.06415(14)$	$0.41475(9)$	$0.63634(9)$	$0.0446(3)$
N3	$0.29963(15)$	$0.43342(9)$	$0.54042(9)$	$0.0453(3)$
N4	$0.3974(2)$	$0.63687(11)$	$0.58898(12)$	$0.0626(4)$
H1	$0.372(2)$	$0.7101(14)$	$0.6165(12)$	$0.059(4)^{*}$
H2	$0.480(3)$	$0.6342(15)$	$0.5474(15)$	$0.064(5)^{*}$
C1	$0.06039(15)$	$0.62259(9)$	$0.71097(9)$	$0.0349(3)$
C2	$0.13553(15)$	$0.52528(10)$	$0.65104(9)$	$0.0358(3)$
C3	$0.28563(16)$	$0.53785(10)$	$0.59138(10)$	$0.0393(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0644(8)$	$0.0324(6)$	$0.0520(7)$	0.000	$0.0291(6)$	0.000
O2	$0.0540(5)$	$0.0385(5)$	$0.0600(6)$	$-0.0051(4)$	$0.0291(4)$	$-0.0103(4)$
N1	$0.0529(6)$	$0.0356(5)$	$0.0471(6)$	$-0.0024(4)$	$0.0248(5)$	$-0.0011(4)$
N2	$0.0460(5)$	$0.0397(5)$	$0.0549(6)$	$-0.0046(4)$	$0.0255(5)$	$-0.0068(4)$
N3	$0.0513(6)$	$0.0401(5)$	$0.0526(6)$	$0.0004(4)$	$0.0287(5)$	$-0.0004(4)$
N4	$0.0745(8)$	$0.0423(6)$	$0.0915(10)$	$-0.0118(5)$	$0.0614(8)$	$-0.0088(6)$
C1	$0.0364(5)$	$0.0344(5)$	$0.0373(5)$	$-0.0010(4)$	$0.0151(4)$	$0.0007(4)$
C2	$0.0374(5)$	$0.0349(6)$	$0.0390(6)$	$-0.0004(4)$	$0.0166(4)$	$0.0010(4)$

supplementary materials

C 3	$0.0435(6)$	$0.0366(6)$	$0.0436(6)$	$0.0017(4)$	$0.0223(5)$	$0.0022(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{N} 1^{\mathrm{i}}$	1.3685 (11)	N4-C3	1.3419 (16)
$\mathrm{O} 1-\mathrm{N} 1$	1.3686 (11)	N4-H1	0.896 (16)
$\mathrm{O} 2-\mathrm{N} 2$	1.3684 (12)	N4-H2	0.871 (19)
$\mathrm{O} 2-\mathrm{N} 3$	1.4001 (13)	C1- $\mathrm{Cl}^{\text {i }}$	1.434 (2)
N1-C1	1.3055 (14)	C1-C2	1.4582 (15)
N2-C2	1.2967 (15)	C2-C3	1.4419 (15)
N3-C3	1.3077 (15)		
$\mathrm{N} 1^{\text {i }}$ - $\mathrm{O} 1-\mathrm{N} 1$	110.94 (11)	N1-C1-C2	117.95 (9)
$\mathrm{N} 2-\mathrm{O} 2-\mathrm{N} 3$	110.93 (8)	$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2$	133.62 (6)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 1$	106.22 (9)	N2-C2-C3	109.39 (10)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{O} 2$	106.07 (9)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	123.83 (9)
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{O} 2$	105.40 (9)	C3-C2-C1	126.57 (10)
$\mathrm{C} 3-\mathrm{N} 4-\mathrm{H} 1$	121.5 (10)	N3-C3-N4	124.54 (11)
$\mathrm{C} 3-\mathrm{N} 4-\mathrm{H} 2$	118.5 (11)	N3-C3-C2	108.19 (10)
H1-N4-H2	118.6 (15)	N4-C3-C2	127.25 (11)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl}^{\text {i }}$	108.31 (6)		
N1- ${ }^{\text {i }}$ 1- $\mathrm{N} 1-\mathrm{C} 1$	0.18 (6)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	17.47 (17)
$\mathrm{N} 3-\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 2$	-0.32 (13)	$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-167.05 (15)
N2-O2-N3-C3	0.77 (13)	$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 3-\mathrm{N} 4$	177.65 (12)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{Cl}^{\text {i }}$	-0.43 (14)	$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 2$	-0.87 (13)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	176.12 (8)	N2-C2-C3-N3	0.73 (14)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	-0.23 (13)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 3$	-174.16 (11)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	174.83 (10)	N2-C2-C3-N4	-177.73 (13)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-156.72 (11)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4$	7.4 (2)
$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	18.8 (2)		

Symmetry code: (i) $-x, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 1 \cdots \mathrm{~N} 1$	$0.90(2)$	$2.37(2)$	$2.932(2)$	$121(1)$
$\mathrm{N} 4-\mathrm{H} 2 \cdots \mathrm{~N} 3{ }^{\mathrm{ii}}$	$0.87(2)$	$2.23(2)$	$3.070(2)$	$162(2)$

Symmetry code: (ii) $-x+1,-y+1,-z+1$.

